Intracellular transport of class I MHC molecules in antigen processing mutant cell lines

J Immunol. 1993 Oct 1;151(7):3407-19.

Abstract

Intracellular transport and stability of class I MHC glycoproteins depends on the assembly of H chain, beta 2-microglobulin, and peptide. The Ag processing mutant cell lines T2 and RMA-S have defects in peptide loading of class I, resulting in reduced cell surface expression of class I molecules. Expression of class I molecules in the murine cell line RMA-S can be induced at 26 degrees C, suggesting that they are transported to the cell surface, but are unstable. However, most human class I molecules in T2 are poorly expressed at the cell surface, even at 26 degrees C. To directly compare the transport of human and mouse alleles in RMA-S and T2, the human alleles HLA-A2, A3, and B27 were transfected into RMA-S along with human beta 2-microglobulin, and the mouse alleles H-2Kb and Db were transfected into T2. Surface expression of HLA-A3 and B27 in RMA-S remained less than 10% of wild-type levels at 26 degrees C. H-2Kb and Db in both cell lines, however, were expressed at 20 to 30% wild-type levels at 37 degrees C and could be induced to wild-type levels at 26 degrees C or with peptides. The selective expression of murine class I glycoproteins at the cell surface of T2 is not because of their greater stability when associated with human beta 2m, since H-2Kb and Db H chain/human beta 2m complexes dissociate more rapidly in vitro than HLA-A3 and B27 complexes. These results suggest that the difference in transport between human and mouse class I in T2 reflects a fundamental structural property of the class I glycoproteins.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Alleles
  • Amino Acid Sequence
  • Animals
  • Antigen-Presenting Cells / metabolism*
  • Biological Transport
  • Genes, MHC Class I
  • Histocompatibility Antigens Class I / analysis
  • Histocompatibility Antigens Class I / metabolism*
  • Humans
  • Mice
  • Molecular Sequence Data
  • Mutation
  • T-Lymphocytes, Cytotoxic / immunology
  • Tumor Cells, Cultured
  • beta 2-Microglobulin / metabolism

Substances

  • Histocompatibility Antigens Class I
  • beta 2-Microglobulin