Relationship between functional Na+ pumps and mitogenesis in cultured coronary artery smooth muscle cells

Am J Physiol. 1993 Jan;264(1 Pt 1):C169-78. doi: 10.1152/ajpcell.1993.264.1.C169.

Abstract

An increase in functional sarcolemmal Na(+)-K(+)-ATPase (Na+ pump) precedes proliferation in vascular smooth muscle cells (VSMCs) seeded in 10% fetal bovine serum (FBS), but its role in mitogenesis is unresolved. Enzymatically dispersed canine coronary artery VSMCs were seeded in FBS and studied through confluence. Before a shift in cell cycle (G1-->S, G2 + M) and appearance of the nonmuscle isoform of myosin (MHCnm), intracellular Na+ content (Na+i) and cell volume (CV) increased (day 0 through day 3). Na+ pump number ([3H]-ouabain binding) increased at day 4 followed by a decrease in Na+i and CV. When Na+ pumps were inhibited by the addition of ouabain to FBS, VSMCs were arrested in G1, and MHCnm was not upregulated. Na+i increased similarly to that in FBS but failed to correct to day 0 levels. Withdrawal of ouabain at day 4 in culture led to an increase in Na+ pump number, a decrease in Na+i, entry of cells into S and G2 + M, and upregulation of MHCnm. These data suggest that Na+i, phenotypic modulation, and entry of cells into the cell cycle are temporally related, with Na+ pump-mediated correction of increased Na+i as a key event in the VSMC mitogenic process.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cations / metabolism
  • Cell Count
  • Cells, Cultured
  • Coronary Vessels / cytology
  • Coronary Vessels / metabolism*
  • Dogs
  • Female
  • Flow Cytometry
  • Male
  • Mitogens / blood
  • Mitogens / pharmacology*
  • Muscle, Smooth, Vascular / cytology
  • Muscle, Smooth, Vascular / metabolism*
  • Myosins / metabolism
  • Ouabain / metabolism
  • Sodium-Potassium-Exchanging ATPase / drug effects
  • Sodium-Potassium-Exchanging ATPase / physiology*

Substances

  • Cations
  • Mitogens
  • Ouabain
  • Myosins
  • Sodium-Potassium-Exchanging ATPase