A number of 5-heteroaromatic-substituted 2'-deoxyuridines were synthesized from 5-iodo-2'-deoxyuridine using tetraorganotin reagents and palladium complexes as catalyst. The palladium-catalyzed cross-coupling reaction between 5-iodo-2'-deoxyuridine and stannylated heteroaromatics was optimized for the synthesis of the 5-thien-3-yl-2'-deoxyuridine and 5-furan-3-yl-2'-deoxyuridine. 5-(5-Iodothien-2-yl)-2'-deoxyuridine was used as starting material for the synthesis of 5-(5-methylthien-2-yl)-2'-deoxyuridine, 5-(5-vinylthien-2-yl)-2'-deoxyuridine, and 5-(5-ethynylthien-2-yl)-2'- deoxyuridine. 5-(5-Nitrothien-2-yl)-2'-deoxyuridine was synthesized using ceric ammonium nitrate as reagent. 5-(Isoxazol-5-yl)-2'-deoxyuridine was synthesized from 5-(3-oxopropyn-1-yl)-2'-deoxyuridine. Finally, 5-(5-chlorothien-2-yl)-beta-D-arabinofuranosyluracil and 5-(5-bromothien-2-yl)-beta-D-arabinofuranosyluracil were obtained by halogenation of 5-thien-2-yl-beta-D-arabinofuranosyluracil. Introduction of an alkyl substituent in the 5-position of the thienyl group of 5-thien-2-yl-2'-deoxyuridine or substitution of the 2-deoxyribofuranose ring by an arabinofuranose moiety gave decreased activity against HSV-1 and VZV replication when compared with the 5"-halogenated-5-thien-2-yl-2'-deoxyuridines. 5-(5-Bromothien-2-yl)-2'-deoxyuridine caused prompt healing of HSV-1 keratitis when administered as eye drops (0.2%) to rabbits.