Varicella-zoster virus (VZV) open reading frame 4 (ORF4) encodes a protein with a predicted molecular weight of 51,540 presenting amino acid sequence homology with the immediate-early regulatory protein ICP27 of herpes simplex virus type 1. To investigate the regulatory properties of the ORF4 gene product, we performed a series of transient expression assays in Vero cells, using a plasmid expressing ORF4 as effector and several VZV genes and heterologous genes as targets. The VZV target plasmids contained promoter/regulatory regions from genes belonging to the three putative VZV kinetic classes fused to the chloramphenicol acetyltransferase (CAT) gene. The heterologous target plasmids consisted of promoter/regulatory regions of human cytomegalovirus, Rous sarcoma virus, and human immunodeficiency virus type 1 fused to the reporter gene. These experiments demonstrated that the ORF4 gene product activated expression of ORF62 in a dose-dependent fashion but had no effect on the expression of the three other putative immediate-early genes (ORF4, ORF61, and ORF63). When various amounts of ORF4 were transfected in the presence of early gene promoters, dose-dependent transactivation was evidenced with the thymidine kinase gene (ORF36) and the major DNA-binding protein gene (ORF29) promoters; interestingly, little activity was detected with the promoter of the DNA polymerase gene (ORF28). No activation of late gene expression, represented by the glycoprotein I and glycoprotein II genes, was seen even over a wide range of concentrations of input ORF4 plasmid. Expression of pCMVCAT, pRSVCAT, and pHIVCAT was also stimulated by the ORF4 gene product. CAT mRNA analysis showed that activation of VZV target promoters occurs at the transcriptional and/or posttranscriptional level.