We investigated the in vitro activity and the in vivo efficacy of the beta-lactam-beta-lactamase inhibitor combination cefoperazone-sulbactam against an isogenic series of Klebsiella pneumoniae strains. Both cefoperazone and cefoperazone-sulbactam were active in vitro against a susceptible clinical strain, and the combination was highly effective in the treatment of rat intra-abdominal abscesses. Loss of expression of a 39-kDa outer membrane protein resulted in at least a fourfold increase in the MICs of cefoperazone and cefoperazone-sulbactam but did not appreciably affect the in vivo efficacy of either regimen. Introduction of plasmid RP4, which encodes the TEM-2 beta-lactamase, into the susceptible strain resulted in the loss of in vitro activity and in vivo efficacy for cefoperazone. The in vitro activity of cefoperazone-sulbactam against this strain was diminished, but the antibiotic combination remained highly active in vivo. Introduction of RP4 into the strain lacking the 39-kDa outer membrane protein resulted in a fourfold increase in the in vitro MIC of cefoperazone-sulbactam in comparison with the beta-lactamase-producing susceptible strain and resulted in a loss of in vivo efficacy against infections caused by this strain. These results suggest that the combination of different resistance mechanisms, neither of which alone results in substantially diminished cefoperazone-sulbactam efficacy in vivo, can cause in vivo resistance to the beta-lactam-beta-lactamase inhibitor combination in K. pneumoniae.