We constructed recombinant vaccinia virus vectors for expression of the structural region of hepatitis C virus (HCV). Infection of mammalian cells with a vector (vv/HCV1-906) encoding C-E1-E2-NS2 generated major protein species of 22 kDa (C), 33 to 35 kDa (E1), and 70 to 72 kDa (E2), as observed previously with other mammalian expression systems. The bulk of the E1 and E2 expressed by vv/HCV1-906 was found integrated into endoplasmic reticulum membranes as core-glycosylated species, suggesting that these E1 and E2 species represent intracellular forms of the HCV envelope proteins. HCV E1 and E2 formed E1-E2 complexes which were precipitated by either anti-E1 or anti-E2 serum and which sedimented at approximately 15 S on glycerol density gradients. No evidence of intermolecular disulfide bonding between E1 and E2 was detected. E1 and E2 were copurified to approximately 90% purity by mild detergent extraction followed by chromatography on Galanthus nivalus lectin-agarose and DEAE-Fractogel. Immunization of chimpanzees with purified E1-E2 generated high titers of anti-E1 and anti-E2 antibodies. Further studies, to be reported separately, demonstrated that purified E1-E2 complexes were recognized at high frequency by HCV+ human sera (D. Y. Chien, Q.-L. Choo, R. Ralston, R. Spaete, M. Tong, M. Houghton, and G. Kuo, Lancet, in press) and generated protective immunity in chimpanzees (Q.-L. Choo, G. Kuo, R. Ralston, A. Weiner, D. Chien, G. Van Nest, J. Han, K. Berger, K. Thudium, J. Kansopon, J. McFarland, A. Tabrizi, K. Ching, B. Mass, L. B. Cummins, E. Muchmore, and M. Houghton, submitted for publication), suggesting that these purified HCV envelope proteins display native HCV epitopes.