Hepatitis B virus gene expression is to a large extent under the control of enhancer I (EnhI). The activity of EnhI is strictly dependent on the enhancer factor C (EF-C) site, an inverted repeat that is bound by a ubiquitous nuclear protein known as EF-C. Here we report the unexpected finding that EF-C is in fact identical to RFX1, a novel transcription factor previously cloned by virtue of its affinity for the HLA class II X-box promoter element. This finding has allowed us to provide direct evidence that RFX1 (EF-C) is crucial for EnhI function in HepG2 hepatoma cells; RFX1-specific antisense oligonucleotides appear to inhibit EnhI-driven expression of the hepatitis B virus major surface antigen gene, and in transfection assays, RFX1 behaves as a potent transactivator of EnhI. Interestingly, transactivation of EnhI by RFX1 (EF-C) is not observed in cell lines that are not of liver origin, suggesting that the ubiquitous RFX1 protein cooperates with liver-specific factors.