The rat 5-hydroxytryptamine (5-HT)2F (serotonin2F) receptor is a newly cloned member of the 5-HT2/1C receptor family. The pharmacology of the 5-HT2F receptor was explored using a variety of structurally different compounds in a radioligand binding assay. In addition, the 5-HT2F receptor was shown to stimulate production of inositol 1,4,5-trisphosphate in the transformed cells. Based on the affinities of the compounds tested, their known affinities for certain of the other 5-HT receptors, and the fact that activation of the cloned 5-HT2F receptor stimulates inositol 1,4,5-trisphosphate production, the 5-HT2F receptor was determined to be a novel receptor and a member of the 5-HT2/1C receptor family. In addition, several agonists and partial agonists were evaluated for contractile activity in the rat stomach fundus, and these activities were correlated with their binding affinities at the 5-HT2F receptor. A highly significant correlation was found, providing additional evidence that is consistent with the 5-HT2F receptor being the stomach fundal contractile receptor. [3H]5-HT had high affinity for this receptor both at 37 degrees and at 0 degree (Kd = 7.87 +/- 0.55 and 0.12 +/- 0.02 nM, respectively). The difference in affinity for [3H]5-HT at the two temperatures prompted an investigation of potential temperature-dependent differences in the binding affinities of agonists versus antagonists. Agonists such as 5-HT, 5-methoxytryptamine, etc., showed higher affinity for the 5-HT2F receptor at 0 degree than at 37 degrees, whereas antagonists such as methysergide, 1-naphthylpiperazine, etc., showed no difference in affinity for this receptor at the two different temperatures. Therefore, the affinity of a compound for the 5-HT2F receptor at 37 degrees versus 0 degree was shown to be useful for predicting agonist or antagonist activity. Additionally, information is provided about some of the structural requirements for the affinity of certain tryptamines at the 5-HT2F receptor.