Air volume-pressure (VP) curves were recorded simultaneously on pairs of mature rabbit fetuses from the same litter with one member of the pair at 37 degrees C and the other at 22 degrees C. Intrasaccular bubbles, formed primarily during inflation, were assessed for stability and surface tension (gamma). Average air flow rates (dV/dt) were calculated from the VP data. In separate experiments, liquid VP curves were recorded at 37 degrees and 22 degrees C: maximal liquid V was matched to maximal air V at 37 degrees and 22 degrees C, respectively. Fetal pulmonary liquid (FPL) viscosity (eta) and density (rho) were determined by standard methods. Both the effect of temperature on lung mechanics as reported previously, and the reliability of the rabbit model were confirmed in the paired fetuses. Analysis of fluid dynamics revealed that of the six parameters relevant to initial inflation-deflation of FPL-filled lungs, liquid rho, distensibility (recoil), and gamma were not altered significantly by temperature increase from 22 degrees to 37 degrees C. Enhanced lung mechanics at 37 degrees C (including enhanced inflation at lower P, higher maximal V, increased production of intrasaccular bubbles, and higher V at end-deflation) was primarily due to lowering of FPL eta at the higher temperature which appears to have an effect by augmenting bulk liquid flow and liquid drainage. Lower eta increases bulk flow through airways directly. Consequent recruitment and distention of these conducting units effectively increases radius (r) and further enhances flow. (The ultimate "brake" to airways flow at both temperatures is counter P from gamma at air/liquid menisci.).(ABSTRACT TRUNCATED AT 250 WORDS)