In order to investigate the antiproliferative and anti-invasive effects of tumor necrosis factor (TNF)-alpha on human glioblastoma cells, an in vitro three-dimensional (anchorage-independent) assay was performed using Matrigel, a mixture of extracellular matrix proteins. Four glioblastoma-derived cell lines, including one cloned line, were cultured in Matrigel with or without TNF-alpha. In the Matrigel containing TNF-alpha, three of the four cell lines, including the cloned line, showed significant growth inhibition in a dose-dependent manner. Dramatic three-dimensional morphological differences were observed between TNF-treated and untreated glioblastoma cells cultured in Matrigel. Untreated cells formed large and highly branched colonies throughout the gel. In contrast, the majority of TNF-treated cells demonstrated truncated branching processes and, at a high TNF-alpha dose, an increasing number of cells remained in relatively small spherical aggregates, their cell processes being significantly reduced. Quantitative invasion assay using a micro-Boyden chamber system confirmed that TNF-treated cells lost invasiveness in a dose-dependent manner. These results suggest that TNF-alpha exerts not only antiproliferative but also anti-invasive effects on human glioblastoma cells in vitro. It is believed that this is the first report showing the anti-invasive effect of TNF-alpha on tumor cells.