Traditional chemical means of preparing enzyme-ligand conjugates for use in enzyme-linked immunosorbent assays (ELISAs) lead to the production of multisubstituted enzyme-ligand conjugates with a high degree of variability in the site of ligand attachment. A genetically engineered fusion protein was prepared in order to investigate the feasibility of controlled production of conjugates for use in ELISAs. Specifically, a synthetic octapeptide was fused with bacterial alkaline phosphatase. The resulting enzyme-peptide conjugate is monosubstituted (one peptide per subunit), has a single site of attachment, and results in assays with good response characteristics. The use of such fusion proteins, which combine small analyte peptides with enzyme labels, can lead to a new approach to improved assays for numerous biomolecules, including peptide pharmaceuticals, neurotransmitters, hormones, cell surface antigens, etc.