The emigration of leukocytes such as neutrophils into inflammatory sites requires adhesion to the endothelium of small venules. The initial adhesive event is margination characterized by rolling of neutrophils along the luminal surface of the endothelium. Each member of the selectin family of adhesion molecules has been shown to support neutrophil rolling under conditions of flow. E-selectin is synthesized by endothelial cells following cytokine stimulation, P-selectin is rapidly mobilized from Weibel-Palade bodies to the endothelial cell surface following stimulation with agents such as histamine, and L-selectin is constitutively expressed on the surface of leukocytes. Each selectin functions primarily as a lectin, recognizing carbohydrate structures on the leukocyte or endothelial cell surface. Once the marginated neutrophil forms a stationary adhesion with endothelial cells, it is stimulated by chemotactic factors to downregulate the selectin-based adhesion and upregulate adherence dependent on beta 2-integrins, principally CD11a/CD18 (LFA-1) and CD11b/CD18 (Mac-1). These adhesion molecules interact with intercellular adhesion molecule 1 (ICAM-1) and possibly other structures on the endothelial cell, and the leukocyte rapidly emigrates into surrounding tissue. Transendothelial migration in vitro is markedly inhibited by monoclonal antibodies against CD18 integrins or ICAM-1. Monoclonal antibodies against the selectins, CD18, CD11a, CD11b, and ICAM-1 have all been shown to significantly reduce the influx of neutrophils into sites of inflammation in various animal models.