Oxygen binding to crystals of hemoglobin Rothschild (beta 37 Trp-->Arg) in the T quaternary structure has been investigated by polarized absorption microspectrophotometry. These crystals were grown from poly(ethylene glycol) solutions containing low concentrations of salt. In the absence of chloride, they have a significantly higher oxygen affinity than crystals of human hemoglobin A grown in a similar manner, and exhibit Hill coefficients lower than 1. There is no Bohr effect from pH 6 to 9. We have found that chloride decreases the oxygen affinity of Hb Rothschild crystals, an effect which is absent in crystals of HbA. This dependence of affinity on chloride is almost certainly associated with the chloride binding sites which have been localized crystallographically at the mutant arginine residues (Kavanaugh et al., 1992). Since chloride binding appears to lower the oxygen affinities of both the alpha and beta chains, the linkage between the binding of oxygen and the dissociation of chloride results in significant cooperativity in oxygen binding to the crystals.