Fimbriae from Porphyromonas gingivalis are believed to play an important role in the pathogenesis of periodontal diseases. The aim of the present study was to identify the fimbrial protective T-cell epitopes in CBA/J mice. A truncated protein corresponding to amino acids 1 to 198, PgF1-198, was generated and allowed us to demonstrate that the N terminus of the protein contains T-cell epitopes. With synthetic peptides, an immunodominant sequence was identified between amino acids 103 and 122. The corresponding peptide, PgF-P8, induced T-cell proliferation after in vitro restimulation of in vivo-primed cells, giving a stimulation index comparable to the one obtained with r-fimbrillin, and induced production of both Th1 and Th2 cytokines. Growth supernatant contained significant levels of interleukin 2 (IL-2), gamma interferon, IL-4 (28 pg/ml), and tumor necrosis factor alpha. Immunization of mice with r-fimbrillin, PgF1-198, and PgF-P8 induced production of antibodies specific to r-fimbrillin and PgF-P8. In addition, by using the mouse chamber model we found that mice immunized with PgF-P8 were dramatically protected against a normally lethal injection of P. gingivalis. Animals immunized with PgF-P8 40 days prior to challenge showed a 60% survival rate when challenged with P. gingivalis, compared with just 25% survival in control animals and just 5% survival in mice immunized with PgF-P8 only 21 days prior to challenge. Although the protection depended on the time of immunization before the bacterial challenge, it did not correlate with in vivo local cytokine production (IL-2, IL-4, IL-6, tumor necrosis factor alpha, and gamma interferon), specific antibody levels, or the isotype of anti-PgF-P8 antibodies produced.