Thermogenesis during rest and exercise in cold air

Can J Physiol Pharmacol. 1995 Aug;73(8):1149-53. doi: 10.1139/y95-164.

Abstract

Nine non-cold-acclimated subjects (5 female, 4 male, mean age 22.5 years) were studied to determine whether nonshivering thermogenesis contributes to cold-induced metabolic heat production during rest (50 min standing) and exercise (40 min treadmill walking) in 5 degrees C. Propranolol was administered orally (females, 60 mg, 1.12 mg.kg-1; males, 80 mg, 0.96 mg.kg-1) to block nonshivering thermogenesis. Measurements were taken at both 25 degrees C, 13.1 Torr (water vapor pressure; 1 Torr = 133.3 Pa) and 5 degrees C, 3.6 Torr, with sessions randomly assigned to be drug-neutral (DN), drug-cold (DC), placebo-neutral (PN), and placebo-cold (PC). Body core temperature was not different between any of the experimental conditions. Mean body temperature (5 degrees C, 32.2 +/- 0.20 degrees C (+/- SEM); 25 degrees C, 35.3 +/- 0.20 degrees C) and mean skin temperature (5 degrees C, 22.4 +/- 0.70 degrees C; 25 degrees C, 31.4 +/- 0.60 degrees C) were lower (p < 0.05) in the 5 degrees C than 25 degrees C environment (rest, exercise, drug (D), placebo (P), combined); while shivering (EMG) was higher (16.5 +/- 3.9% above baseline) at 5 degrees C than 25 degrees C (15 +/- 2.1% below baseline) (p < 0.05). The greater VO2 in 5 degrees C compared with 25 degrees C for the same condition is the thermoregulatory VO2 (TVO2). TVO2 (mL.min-1) was lower (p < 0.05) on the D (mean = 189.5 +/- 17.7) than on the P (mean = 238.1 +/- 20.2) during rest and during exercise (D, 206.1 +/- 63.7; P, 338.4 +/- 46.7). The EMG was 21% above baseline in the DC, and 12% above baseline for PC (p > 0.05). These results suggest a nonshivering component to heat production during acute cold exposure, which can be blocked with propranolol.

Publication types

  • Clinical Trial
  • Randomized Controlled Trial

MeSH terms

  • Adolescent
  • Adult
  • Body Temperature / drug effects
  • Body Temperature / physiology
  • Body Temperature Regulation*
  • Cold Temperature
  • Exercise / physiology*
  • Female
  • Heart Rate / drug effects
  • Heart Rate / physiology
  • Humans
  • Male
  • Oxygen Consumption
  • Propranolol / pharmacology
  • Shivering

Substances

  • Propranolol