Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on tryptophan and glucose homeostasis in the most TCDD-susceptible and the most TCDD-resistant species, guinea pigs and hamsters

Arch Toxicol. 1995;69(10):677-83. doi: 10.1007/s002040050231.

Abstract

We have previously reported that in rats 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) lethality is associated (although not necessarily causally) with changes in brain serotonin (5-HT) metabolism. In the present study, we have examined whether this holds for other species by comparing the effect of TCDD in the most TCDD-susceptible and the most TCDD-resistant species, guinea pigs and hamsters, respectively. Body weight gain of guinea pigs exposed to TCDD (0.3-2.7 micrograms/kg) diminished dose dependently, while the effect was marginal in hamsters (900-4600 micrograms/kg). Brain 5-hydroxyindoleacetic acid (the main metabolite of brain 5-HT), brain tryptophan (the precursor amino acid of 5-HT), and plasma free and total tryptophan were not affected at any dose in guinea pigs. In contrast, 4 days after exposure, the levels of plasma free and total tryptophan were consistently increased in hamsters. These, as well as brain tryptophan, were still elevated 10 days after exposure. TCDD did not affect plasma glucose level in either species. Liver glycogen was decreased in a dose-dependent manner in TCDD-treated guinea pigs as well as in their pair-fed controls on day 10. There was no change in liver glycogen in hamsters. The activity of the gluconeogenic enzyme, phosphoenolpyruvate carboxykinase was only depressed in hamsters by all doses of TCDD. We conclude that changes in tryptophan metabolism or in carbohydrate homeostasis cannot explain the wide interspecies differences in susceptibility to the acute lethality of TCDD, although they may correlate with some aspects of its toxicity in certain species.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blood Glucose / metabolism
  • Body Weight / drug effects
  • Cricetinae
  • Fatty Acids, Nonesterified / blood
  • Glucose / metabolism*
  • Guinea Pigs
  • Homeostasis / drug effects
  • Liver Glycogen / metabolism
  • Mesocricetus
  • Phosphoenolpyruvate Carboxykinase (GTP) / metabolism
  • Polychlorinated Dibenzodioxins / toxicity*
  • Serotonin / metabolism
  • Species Specificity
  • Tryptophan / metabolism*

Substances

  • Blood Glucose
  • Fatty Acids, Nonesterified
  • Liver Glycogen
  • Polychlorinated Dibenzodioxins
  • Serotonin
  • Tryptophan
  • Phosphoenolpyruvate Carboxykinase (GTP)
  • Glucose