Identification of platelet-derived growth factor A and B chains in human renal vascular rejection

Am J Pathol. 1996 Feb;148(2):439-51.

Abstract

Platelet-derived growth factor (PDGF) exists as a dimer composed of two homologous but distinct peptides termed PDGF-A and -B chains, and may exist as AA, AB, and BB isoforms. The PDGF-B chain has been implicated as a mediator of renal vascular rejection by virtue of up-regulated expression of its receptor, PDGF beta-receptor, in affected arteries. A role for PDGF-A chain in mediating intimal proliferation has been suggested in human atherosclerosis (Rekhter MD, Gordon D: Does platelet-derived growth factor-A chain stimulate proliferation of arterial mesenchymal cells in human atherosclerotic plaques? Circ Res 1994, 75:410), but no studies of this molecule in human renal allograft injury have been reported to date. We used two polyclonal antisera to detect expression of PDGF-A chain and one monoclonal antibody to detect PDGF-B chain by immunohistochemistry in fixed, paraffin-embedded tissue from 1) normal adult kidneys, 2) a series of renal transplant biopsies chosen to emphasize features of vascular rejection, and 3) allograft nephrectomies. Immunohistochemistry was correlated with in situ hybridization on adjacent, formalin fixed tissue sections from nephrectomies utilizing riboprobes made from PDGF-A and -B chain cDNA. PDGF-A chain is widely expressed by medial smooth muscle cells of normal and rejecting renal arterial vessels of all sizes by immunohistochemistry and in situ hybridization. PDGF-A chain is also expressed by a population of smooth muscle cells (shown by double immunolabeling with an antibody to alpha-smooth muscle actin) comprising the intima in chronic vascular rejection. In arteries demonstrating acute rejection, up-regulated expression of PDGF-A chain by endothelial cells was detected by both immunohistochemistry and in situ hybridization. In contrast, PDGF-B chain was identified principally in infiltrating monocytes within the rejecting arteries, similar to its localization in infiltrating monocytes in human atherosclerosis. Although less prominent than the case for PDGF-A chain, PDGF-B chain also was present in medial and intimal smooth muscle cells in both rejecting and nonrejecting renal arteries. PDGF-A and -B chains have now been localized at both the mRNA and protein levels to the intimal proliferative lesions of vascular rejection. These peptides, which are known stimuli for smooth muscle cell migration and proliferation in experimental vascular injury, may have similar stimulatory effects on smooth muscle cells in an autocrine and/or paracrine manner to promote further intimal expansion and lesion progression in this form of human vasculopathy.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Blotting, Western
  • Endothelium, Vascular / chemistry
  • Graft Rejection / metabolism*
  • Humans
  • Immunohistochemistry
  • In Situ Hybridization
  • Kidney / blood supply
  • Kidney / chemistry*
  • Kidney Transplantation*
  • Muscle, Smooth, Vascular / chemistry
  • Platelet-Derived Growth Factor / analysis*
  • Proto-Oncogene Proteins / analysis*
  • Proto-Oncogene Proteins c-sis
  • Renal Artery / chemistry*
  • Up-Regulation

Substances

  • Platelet-Derived Growth Factor
  • Proto-Oncogene Proteins
  • Proto-Oncogene Proteins c-sis
  • platelet-derived growth factor A