Experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis, is an autoimmune disorder seen in mice and rats following immunization with myelin basic protein (MBP) or MBP-derived peptides. IFN-gamma, a cytokine produced by a variety of cells, is involved in many inflammatory and immune regulatory events. Contradictory results concerning exacerbations and the disease course were seen comparing injections of IFN-gamma in humans suffering from multiple sclerosis to studies using anti-IFN-gamma Abs in mice with EAE. To study the role of IFN-gamma and IFN-gamma-producing cells in EAE, we crossed IFN-gamma knockout mice (H-2b) (unable to produce IFN-gamma due to the disruption of the IFN-gamma gene) with an EAE-susceptible mouse strain, B10.PL (H-2u). EAE was seen in IFN-gamma knockout mice, heterozygotic (IFN-gamma +/-) mice, as well as wild-type littermates following immunization with MBP. Histologic analyses of the central nervous system of IFN-gamma knockout mice with EAE revealed massive infiltrates composed of lymphocytes, macrophages, and granulocytes. We conclude that the presence of IFN-gamma is not crucial to the induction or the clinical course of EAE.