Flow cytometric DNA analysis was performed in combination with three-colour immunological staining of cell surface antigens on density-separated mononuclear cells (MNC) obtained from peripheral blood (PB) before, during and after cytokine stimulation of healthy adults. The aim of the study was to determine the cell-cycling status of haemopoietic progenitor cells mobilized into the blood of healthy volunteers during a 5 d treatment period with 5/micrograms per kg body weight of either granulocyte colony-stimulating factor (G-CSF) or granulocyte-macrophage colony-simulating factor (GM-CSF). Despite considerably increasing numbers of CD34+ PB MNC, the latter were not found to be in S/G2M phase, whereas, among the CD34- MNC, the proportion of cells in S/G2M phase increased from < 0.1% to 0.75 +/- 0.4% (GM-CSF) and to 1.34 +/- 0.75% (G-CSF) and dropped again after discontinuation of the cytokine stimulation. These cells expressed CD33 but were negative for CD45RA, CD3, CD19 and CD14 and were thus considered granulopoietic cells. Analogous results were obtained from analyses of cord blood (CB). In contrast, CD34+ cells from bone marrow (BM) were partially (between 9% and 15%) found to be in S/G2M phase. The non-cycling status of PB and progenitor cells was confirmed by the analysis of CD34+ cells enriched from the two cells sources. However, in vitro stimulation of these progenitor cells using IL3, GM-CSF, erythropoietin and steel factor (SF) revealed that, after 48 h in suspension culture, up to 30% of the CD34+ cells were in S/G2m phase. The fact that cycling CD34+ cells are only detectable in BM but not in PB or CB may suggest different adhesive properties of migrating/mobilized 'stem cells' which may require the BM micro-environment for adequate proliferation in vivo.