Stanniocalcin (STC) is a polypeptide hormone that was first discovered in fishes, where it functions as a regulator of calcium and phosphate homoeostasis. Recently, complementary DNAs encoding human STC (hSTC) have been characterized, and recombinant hSTC has been synthesized in a bacterial expression system. In preliminary studies, STC-immunoreactive cells have already been identified in human kidney tubules with antibodies to recombinant hSTC. The purpose of this study was to map the overall spatial distribution of STC cells in mammalian kidney, using the rat as a model system. Immunocytochemistry was performed on fixed sections of rat kidney tissue using hSTC antiserum in conjunction with fluorescein isothiocyanate-conjugated second antibodies. STC-immunoreactive cells were found in cortical thick ascending limb, in macula densa, in distal convoluted tubules, and in the cortical and medullary collecting ducts. All cortical thick ascending limb cells contained immunoreactive STC. Most distal convoluted tubules cells contained STC, and these were identified as principal cells. The distribution of STC cells in cortical and medullary collecting ducts also corresponded closely to the known frequently of principle cells in these segments, suggesting that principal cells are the site of STC storage and/or synthesis in both distal convoluted tubules and collecting ducts. Some collecting duct intercalated cells contained STC as well, and these were tentatively identified as alpha-type intercalated cells. As all tubular segments containing STC are known to be involved in regulated ion transport, renally derived STC may be acting in an autocrine, paracrine and/or endocrine fashion to regulate one or more of these transport processes.