The aim of this study is to assess the ability of three methods, alkaline elution (AE), nick translation (NT), and single-cell gel electrophoresis (SCGE), to detect DNA single-strand breaks (ssb) in human peripheral blood lymphocytes (HPBL) exposed in vitro to three genotoxic agents; gamma-rays, ethyl methanesulfonate (EMS) and benzo[a]pyrene diol epoxide (BPDE). The ultimate objective is to select the most feasible, sensitive, and reproducible method for the monitoring of populations exposed to genotoxic agents. AE and NT do not seem suitable assays. AE is able to detect DNA lesions induced by the three compounds, but only at relatively high doses (2 Gy, 5 mM EMS and 20 microM BPDE). With NT, DNA alterations induced by gamma-rays are not detected and ssb are only evidenced after exposure to EMS (80 mM), which already alters the viability of the lymphocytes. Nick translation is able to detect ssb induced by 10 microM BPDE. Compared to the other assays, the sensitivity of the SCGE assay is significantly higher since statistically significant changes were detected after incubation with 0.5 mM EMS and 1.25 microM BDPE. SCGE is a relatively simple method, not time-consuming and applicable to a large number of samples per working day. In conclusion, on the basis of the results of this in vitro comparison, SCGE seems a promising method for the monitoring of populations exposed to genotoxic chemicals.