A new experimental approach was used to determine whether a eucaloric, low fat, high carbohydrate diet increases fatty acid synthesis. Normally volunteers consumed low fat liquid formula diets (10% of calories as fat and 75% as glucose polymers, n = 7) or high fat diets (40% of calories as fat and 45% as glucose polymers, n = 3) for 25 d. The fatty acid composition of each diet was matched to the composition of each subject's adipose tissue and compared with the composition of VLDL triglyceride. By day 10, VLDL triglyceride was markedly enriched in palmitate and deficient in linoleate in all subjects on the low fat diet. Newly synthesized fatty acids accounted for 44 +/- 10% of the VLDL triglyceride. Mass isotopomer distribution analysis of palmitate labeled with intravenously infused 13C-acetate confirmed that increased palmitate synthesis was the likely cause for the accumulation of triglyceride palmitate and "dilution" of linoleate. In contrast, there was minimal fatty acid synthesis on the high diet. Thus, the dietary substitution of carbohydrate for fat stimulated fatty acid synthesis and the plasma accumulation of palmitate-enriched, linoleate-deficient triglyceride. Such changes could have adverse effects on the cardiovascular system.