The 92-kDa type IV collagenase (92-kDa gelatinase B also referred to as MMP-9), which plays a critical role in extracellular matrix degradation, is regulated by growth factors that mediate their effects through the ras proto-oncogene. The current study was undertaken to determine the transcriptional requirements for the induction of 92-kDa gelatinase B expression by an activated ras oncogene. Transfection of OVCAR-3 cells with an expression vector encoding an activated Ha-ras increased 92-kDa gelatinolytic activity and stimulated (over 10-fold) the activity of a CAT reporter driven by 670 nucleotides of 5' flanking sequence of the 92-kDa gelatinase B gene. Transient assays using a CAT reporter driven by 5' deleted fragments of the 92-kDa gelatinase B promoter indicated that a region spanning -634 to -531 was required for optimal induction of the promoter. The individual deletion, or mutation, of a PEA3/ets (-540) motif, AP-1 sites (-533, -79), a NF-kappa B (-600) consensus sequence, and a GT box (-52) substantially reduced the activation of the promoter by ras. An expression vector encoding the PEA3 transcription factor caused a 3-fold stimulation of the wild type but not the PEA3/ets-deleted 92-kDa gelatinase B promoter. Coexpression of a dominant negative c-jun antagonized the ras-dependent stimulation of the 92-kDa gelatinase B promoter-driven CAT reporter. The signaling pathway mediating the induction of 92-kDa gelatinase B promoter activity by ras was examined. The expression of a phosphatase (CL100) which inactivates multiple mitogen-activate protein kinase members abrogated the stimulation of 92-kDa gelatinase B promoter activity by ras. However, the expression of a kinase-deficient mitogen-activated protein kinase kinase 1 (MEK1) did not prevent activation of the 92-kDa gelatinase B promoter by ras and a constitutively activated c-raf expression vector was insufficient for 92-kDa gelatinase B promoter activation. Thus, the stimulation of the 92-kDa gelatinase B promoter by ras requires multiple elements including closely spaced PEA3/est and AP-1 sites and is MEK1-independent.