Specific inhibition of gene expression by antisense agents provides the basis for rational drug discovery based on molecular targets. Due to the specificity of Watson-Crick base-pair hybridization, antisense oligodeoxynucleotides have been used extensively in attempts to inhibit gene expression in both in vitro and in vivo models. Analogues modified from normal phosphodiester oligodeoxynucleotides have entered clinical trials against diseases including AIDS and cancer. Although the precise mechanism of action of these drugs has not been clarified, these oligodeoxynucleotides offer considerable promise as novel molecular therapeutics. We review the recent attempts to harness the therapeutic potential of these oligodeoxynucleotides and appraise the near-term prospects for antisense technology.