Lipid peroxidation of lipoprotein(a) [Lp(a)] by defined oxygen-centred free radicals (O2-/OH, O2-, O2-/HO2) produced by gamma radiolysis was compared with that of paired samples of low-density lipoprotein (LDL). Lp(a) appeared to be more resistant to oxidation than LDL, as indicated by the kinetic study of four markers of lipid peroxidation; decrease in vitamin E, formation of conjugated dienes and aldehydic products, and modification of electrophoretic mobility. In contrast, similar kinetics of lipid peroxidation were obtained for LDL and Lp(a-), which is the lipoparticle issued following the reductive cleavage of apolipoprotein(a) from Lp(a), thus suggesting that the greater resistance of Lp(a) to lipid peroxidation was due to the presence of apolipoprotein(a). Lipid peroxidation of Lp(a) and LDL induced by peroxyl radicals, which were produced by an azo compound [2,2'-azobis-(2-amidinopropane)dihydrochloride], confirmed both the resistance of Lp(a) to lipid peroxidation and the propensity of Lp(a-) to exhibit a greater susceptibility to oxidation than intact Lp(a). Our findings also indicated that the high content of apolipoprotein(a) in N-acetylneuraminic acid residues was only partly responsible for the resistance of Lp(a) to oxidation.