A cDNA carrying the Rip1 gene, which encodes the Rieske iron-sulfur protein of Schizosaccharomyces pombe, has been cloned by complementing the respiratory deficiency of a Saccharomyces cerevisiae strain in which the endogenous copy of the RIP1 gene has been deleted. The deduced amino acid sequences of the S. pombe and S. cerevisiae iron-sulfur proteins are 50% identical, with the highest region of identity being in the C termini of the proteins, where the 2Fe:2S cluster is bound. When expressed in the S. cerevisiae deletion strain, the S. pombe iron-sulfur protein restores 25-30% of the ubiquinol-cytochrome c reductase activity. The kinetics of cytochrome c reduction, the effects of inhibitors which act at defined sites in the cytochrome bc1 complex, and the optical properties of cytochrome b in membranes from the S. cerevisiae deletion strain complemented with S. pombe iron-sulfur protein indicate that the S. pombe protein interacts with cytochrome b to restore an apparently normal ubiquinol oxidase site, but that interaction between the iron-sulfur protein and cytochrome c1 is partially impaired. This is the first heterologous replacement of an electron transfer protein in a respiratory enzyme complex in S. cerevisiae.