The serpin-enzyme complex receptor recognizes soluble, nontoxic amyloid-beta peptide but not aggregated, cytotoxic amyloid-beta peptide

J Biol Chem. 1996 Jul 26;271(30):18032-44. doi: 10.1074/jbc.271.30.18032.

Abstract

There is now extensive evidence that amyloid-beta peptide is toxic to neurons and that its cytotoxic effects can be attributed to a domain corresponding to amyloid-beta 25-35, GSNKGAIIGLM. We have shown recently that the serine proteinase inhibitor (serpin)-enzyme complex receptor (SEC-R), a receptor initially identified for binding of alpha1-antitrypsin (alpha1-AT) and other serine protease inhibitors, also recognizes the amyloid-beta 25-35 domain. In fact, by recognizing the amyloid-beta 25-35 domain, SEC-R mediates cell surface binding, internalization, and degradation of soluble amyloid-beta peptide. In this study, we examined the possibility that SEC-R mediates the neurotoxic effect of amyloid-beta peptide. A series of peptides based on the sequences of amyloid-beta peptide and alpha1-AT was prepared soluble in dimethyl sulfoxide or insoluble in water and examined in assays for SEC-R binding, for cytotoxicity in neuronal PC12 cells and murine cortical neurons in primary culture, and for aggregation in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The results show that amyloid-beta peptide 25-35 and amyloid-beta peptide 1-40 prepared soluble in dimethyl sulfoxide compete for binding to SEC-R, are nontoxic, and migrate as monomers in SDS-PAGE analysis. In contrast, the same peptides aged in water did not compete for binding to SEC-R but were toxic and migrated as aggregates in SDS-PAGE. An all-D-amyloid-beta 25-35 peptide was not recognized at all by SEC-R but retained full toxic/aggregating properties. Using a series of deleted, substituted, and chimeric ambeta/alpha1-AT peptides, toxicity correlated well with aggregation but poorly with SEC-R recognition. In a subclone of PC12 cells which developed resistance to the toxic effect of aggregated amyloid-beta 25-35 there was a 2.5-3-fold increase in the number of SEC-R molecules/cell compared with the parent PC12 cell line. These data show that SEC-R does not mediate the cytotoxic effect of aggregated amyloid-beta peptide. Rather, SEC-R could play a protective role by mediating clearance and catabolism of soluble, monomeric amyloid-beta peptide, if soluble amyloid-beta peptide proves to be an in vivo precursor of the insoluble, toxic peptide.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Amyloid beta-Peptides / metabolism*
  • Amyloid beta-Peptides / toxicity
  • Animals
  • CHO Cells
  • Cricetinae
  • Cytotoxins / metabolism*
  • Cytotoxins / toxicity
  • Dose-Response Relationship, Drug
  • HeLa Cells
  • Humans
  • Mice
  • Molecular Sequence Data
  • Neurons / drug effects
  • Neurotoxins / metabolism*
  • Neurotoxins / toxicity
  • PC12 Cells
  • Peptide Fragments / metabolism*
  • Peptide Fragments / toxicity
  • Protein Binding
  • Rats
  • Receptors, Cell Surface / metabolism*
  • Solubility

Substances

  • Amyloid beta-Peptides
  • Cytotoxins
  • Neurotoxins
  • Peptide Fragments
  • Receptors, Cell Surface
  • amyloid beta-protein (25-35)
  • serpin-enzyme complex receptor