Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit

Neuron. 1996 Jun;16(6):1179-88. doi: 10.1016/s0896-6273(00)80144-0.

Abstract

We have characterized the phosphorylation of the glutamate receptor subunit GluR1, using biochemical and electrophysiological techniques. GluR1 is phosphorylated on multiple sites that are all located on the C-terminus of the protein. Cyclic AMP-dependent protein kinase specifically phosphorylates SER-845 of GluR1 in transfected HEK cells and in neurons in culture. Phosphorylation of this residue results in a 40% potentiation of the peak current through GluR1 homomeric channels. In addition, protein kinase C specifically phosphorylates Ser-831 of GluR1 in HEK-293 cells and in cultured neurons. These results are consistent with the recently proposed transmembrane topology models of glutamate receptors, in which the C-terminus is intracellular. In addition, the modulation of GluR1 by PKA phosphorylation of Ser-845 suggests that phosphorylation of this residue may underlie the PKA-induced potentiation of AMPA receptors in neurons.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Cells, Cultured
  • Gene Expression
  • Humans
  • Membrane Potentials / physiology*
  • Molecular Sequence Data
  • Phosphorylation
  • Receptors, AMPA / metabolism*

Substances

  • Receptors, AMPA