Transforming growth factor-beta (TGF-beta) belongs to a family of ligands that regulate cell growth and differentiation. The most commonly observed receptors are referred to as the type I, type II, and type III (betaglycan) TGF-beta receptors. Two receptor models have been presented to account for the various cellular responses to TGF-beta. The first proposes that all TGF-beta signaling results from the formation of a heteromeric type I/type II complex, while the second suggests that distinct type I or type II TGF-beta receptor combinations mediate aspects of TGF-beta signaling. We have addressed this general question relating to TGF-beta signaling by constructing chimeric receptors consisting of the extracellular domain of the granulocyte/macrophage colony-stimulating factor (GM-CSF) alpha or beta receptor fused to the transmembrane and cytoplasmic domain of the type I or type II TGF-beta receptor. Since high affinity GM-CSF binding requires dimerization of the alpha and beta ligand binding subunits, the response elicited by defined type I and/or type II TGF-beta receptor cytoplasmic domain homomers or heteromers can be examined. We show in mesenchymal AKR-2B cells that while TGF-beta-dependent transient luciferase activity, endogenous gene activity, and long-term biological responses are similarly induced by activating the chimeric heteromeric receptors with GM-CSF as the endogenous TGF-beta receptor, chimeric homomeric type I/type I or type II/type II receptors are signaling-incompetent.