Human immunodeficiency virus type 1 drug susceptibility during zidovudine (AZT) monotherapy compared with AZT plus 2',3'-dideoxyinosine or AZT plus 2',3'-dideoxycytidine combination therapy. The protocol 34,225-02 Collaborative Group

J Virol. 1996 Sep;70(9):5922-9. doi: 10.1128/JVI.70.9.5922-5929.1996.

Abstract

Human immunodeficiency virus type 1 (HIV-1) isolates obtained prior to and during a combination therapy trial comparing zidovudine (AZT; 3'-azidothymidine) monotherapy with AZT plus 2',3'-dideoxyinosine (ddI) or AZT plus 2',3'-dideoxycytidine (ddC) were assessed for the development of drug resistance. Drug susceptibility was measured by using two different phenotypic assays, one that requires infection of peripheral blood mononuclear cells with HIV-1 isolated from cocultures and a second based on infection of HeLa CD4+ cells with recombinant virus containing the reverse transcriptase (RT) of the clinical isolate. In addition, genotypic assessment of resistance was obtained by DNA sequencing of the RT coding region. No difference in the development of AZT resistance was noted in isolates from individuals receiving AZT monotherapy or combination therapy. However, a low frequency of ddI or ddC resistance was seen in isolates from the combination arms, which may at least partially explain the enhanced efficacy observed with these drug combinations compared with monotherapy. It was noted from DNA sequencing that a relatively high frequency of the nonnucleoside RT inhibitor resistance mutation, codon 181 changed from encoding Tyr to encoding Cys, was present in some isolates both before and during nucleoside analog combination therapy. Since these patients were unlikely to have access to nonnucleoside RT inhibitors, it is probable that this mutation preexisted at a reasonable level in the wild-type virus population. Comparisons of the AZT susceptibility assays indicated a good correlation between the phenotypic and genotypic determinations. However, direct numerical comparisons between the phenotypic assays were not reliable, suggesting that valid comparisons of different resistance data sets will require the use of the same assay procedure.

Publication types

  • Clinical Trial
  • Comparative Study
  • Randomized Controlled Trial

MeSH terms

  • Antigens, CD
  • Antiviral Agents / pharmacology
  • Antiviral Agents / therapeutic use*
  • CD4 Antigens
  • Coculture Techniques
  • Didanosine / therapeutic use*
  • Drug Resistance, Microbial
  • Drug Therapy, Combination
  • Genotype
  • HIV Reverse Transcriptase
  • HIV Seropositivity / drug therapy*
  • HIV-1 / drug effects*
  • HIV-1 / genetics
  • HIV-1 / isolation & purification
  • HeLa Cells
  • Humans
  • Lymphocytes / immunology
  • Lymphocytes / virology
  • Microbial Sensitivity Tests
  • Phenotype
  • Point Mutation
  • RNA-Directed DNA Polymerase / analysis
  • RNA-Directed DNA Polymerase / genetics
  • Zalcitabine / therapeutic use*
  • Zidovudine / pharmacology
  • Zidovudine / therapeutic use*

Substances

  • Antigens, CD
  • Antiviral Agents
  • CD4 Antigens
  • Zidovudine
  • Zalcitabine
  • HIV Reverse Transcriptase
  • RNA-Directed DNA Polymerase
  • Didanosine