Background: In previous studies, researchers demonstrated the ability of a variety of organisms and in vitro sites of anesthetic action to distinguish between stereoisomers of isoflurane or halothane. However, it was not shown whether organisms with differing sensitivities to stereoisomers of one volatile anesthetic are able to distinguish between stereoisomers of another. In this study, the responses of mutants of Caenorbabditis elegans to stereoisomers of isoflurane were determined for comparison to previous results in halothane.
Methods: Mutant strains of C. elegans were isolated and grown by standard techniques. The EC50s (the effective concentrations of anesthetia at which 50% of the animals are immobilized for 10 s) of stereoisomers of isoflurane and the racemate were determined in wild type and mutant strains of C. elegans.
Results: Wild type C. elegans and strains with high EC50S of the racemate were more sensitive to the (+) isomer of isoflurane by approximately 30%. The racemate showed a EC50s similar to the less potent isomer, the (-) form. In the strains with low EC50s, one strain showed no ability to differentiate between the stereoisomers, whereas two showed a 60% difference between the (+) and (-) forms.
Conclusions: The ability to distinguish between stereoisomers of isoflurane is associated with genetic loci separate from those that distinguish between stereoisomers of halothane. These results are consistent with multiple sites of action for these anesthetics.