Androgen resistance in genetic males occurs when gonadotropins and testosterone are normal, but the physiological androgen response in androgen target organs is absent or decreased. In androgen-dependent target tissues two main defects may be found: 1) defective testosterone metabolism (5 alpha-reductase type 2 deficiency) and 2) anomalies in androgen receptors (androgen insensitivity syndrome (AIS)). The clinical manifestations of these defects vary from subjects with female external genitalia to subjects with mild forms of impaired masculinization. In particular, in the complete form of AIS (CAIS) the phenotype is feminine, and in the partial form (PAIS) the external genitalia are ambiguous with an extremely variable phenotype. The diagnosis requires clinical, hormonal, genetic, and molecular investigation for appropriate gender assignation and treatment. In AIS, cloning of androgen receptor cDNA using the polymerase chain reaction, denaturing gradient gel electrophoresis, and nucleotide sequencing have enabled a variety of molecular defects in the androgen receptor to be identified. The complexity of phenotypic presentation of AIS probably reflects the heterogeneity of androgen receptor gene mutations, but to date a relationship between genotype/phenotype has been difficult to establish, with the same point mutation reported to be associated with different phenotypic expressions. Other factors must therefore also contribute to the clinical presentation of AIS, although none have yet been identified. Establishing the functional consequences of androgen receptor mutations in vitro systems and correlating them with clinical presentation may ultimately provide an explanation for the variable clinical presentation of AIS and perhaps enable prediction of the response to androgen therapy in infants with PAIS.