Familial predisposition to neuroblastoma, a common embryonal cancer of childhood, segregates as an autosomal dominant trait with high penetrance. It is therefore likely that neuroblastoma susceptibility is due to germ line mutations in a tumor suppressor gene. Cytogenetic, functional, and molecular studies have implicated chromosome band 1p36 as the most likely region to contain a suppressor gene involved in sporadic neuroblastoma tumorigenesis. We now demonstrate that neuroblastoma predisposition does not map to any of eight polymorphic markers spanning 1p36 by linkage analysis in three families. In addition, there is no loss of heterozygosity at any of these markers in tumors from affected members of these kindreds. Furthermore, there is strong evidence against linkage to two Hirschsprung disease (a condition that can cosegregate with neuroblastoma) susceptibility genes, RET and EDNRB. We conclude that the neuroblastoma susceptibility gene is distinct from the 1p36 tumor suppressor and the currently identified Hirschsprung disease susceptibility genes.