Several studies have demonstrated that dendritic cells (DC) can be generated in vitro from CD34+ hemopoietic progenitor cells. The growth requirements for these cells are poorly characterized, however. In particular, undefined serum/plasma components seem to significantly contribute to in vitro DC development. We report here that the cytokine combination granulocyte-macrophage CSF (GM-CSF) plus TNF-alpha and stem cell factor (SCF) commonly used for the in vitro generation of DC in serum/plasma-supplemented medium is, in the absence of serum supplementation, very inefficient in inducing DC development. We further demonstrate that supplementation with TGF-beta 1 is required for substantial DC development to occur in the absence of serum. Culture of CD34+ cells under serum-free conditions with TGF-beta 1 plus GM-CSF, TNF-alpha, and SCF strongly induces DC differentiation. This culture condition is even more efficient than culturing CD34+ cells with GM-CSF plus TNF-alpha and SCF in the presence of cord blood plasma. The proportions and total yields of cells with typical DC morphology and CD1a molecule expression are higher. The allostimulatory capacity of DC from TGF-beta 1-supplemented, cultures exceeds allostimulation by cells grown in plasma-containing medium. Substantial numbers (21 +/- 7%) of cells grown in TGF-beta 1-supplemented, but not plasma-supplemented, cultures express the Birbeck granule marker molecule Lag and display numerous Birbeck granules. Cells with distinct monocytic features are less frequently observed in TGF-beta 1-supplemented serum-free cultures. The addition of neutralizing anti-TGF-beta 1 Ab abrogates the observed TGF-beta 1 effects.