The neurotoxic effects of methylmercury on cerebral neuron cultures derived from neonatal mouse were studied. Exposure of cerebral neurons to methylmercury chloride resulted in significant cell damage and death in a time-dependent manner in cerebral neuron cultures. The methylmercury neurotoxicity was blocked by oxygen radical scavengers such as glutathione, catalase, selenium, and cysteine. Antagonists of the N-methyl-D-aspartate (NMDA) receptor, including MK-801 (a non-competitive NMDA antagonist), D-2-amino-5-phosphonovaleric acid (APV) (a competitive NMDA antagonist), and 7-chlorokynurenic acid (an antagonist at the glycine site associated with the NMDA receptor), similarly blocked methylmercury-induced neurotoxicity in cerebral neuron cultures. These results indicate that both oxygen radicals and excitotixic amino acids are involved in the methylmercury-induced neurotoxicity of cerebral neuron cultures.