Dive duration in wild king penguins and the energetic cost of swimming in a 30m long swim channel were determined at Ile de la Possession, Crozet Archipelago, using external data loggers and respirometry, respectively. Calibrated electronic data loggers equipped with a pressure sensor were used to determine dive durations: 95% of dives were less than 6 min long and 66% of dives were less than 4 min long. Dive patterns show that king penguins may intersperse long dive durations (4-6.3 min) with short ones (1.5-3 min) and make surface pauses of variable duration between them (0.5-3.5 min), or dive regularly (for up to 5 h) with long dive durations (5 min) and constant interdive surface intervals (1.5 min). The latter indicates that the aerobic dive limits (ADL) of this species could be higher and oxygen consumption lower than previously reported. Assuming that king penguins dive within their aerobic limit, different approaches to the analysis of the data obtained in the swim channel are discussed to derive the ADL. Swimming speeds observed in the channel ranged from 0.9 to 3.4 m s-1. Transport costs were lowest between 1.8 and 2.2 m s-1. Although at 2.2 m s-1 king penguins used only 10.3 Wkg-1 over a dive+surface cycle (minimal transport costs of 4.7 J kg-1 m-1), we speculate that tisse oxygen consumption during submergence may be as low as 0.23 ml O2 kg-1 s-1 (2.1 times standard metabolic rate, SMR) or perhaps lower (which gives an ADL of 4.2 min). During surface phases, oxygen uptake would be increased to at least 1 ml O2kg-1 s-1 (9.3 times SMR). This implies that at least 70% of all dives are aerobic. Potential physiological mechanisms allowing king penguins to partition O2 consumption between submergence and surface periods remain, however, unclear.