Macrophage colony-stimulating factor (M-CSF) is the main growth factor for mononuclear phagocytes. Responsiveness to growth factors is reduced in the course of functional activation of macrophages. We studied the interference of the macrophage activator interleukin 2 (IL-2) with the response to M-CSF, in macrophages of the M-CSF-dependent murine line BAC-1.2F5. Long-term effects of IL-2 on cell growth were determined, showing that IL-2 reduces the M-CSF-dependent proliferation of macrophages. Short-term effects of IL-2 on the expression of the receptor for M-CSF (M-CSF.R) were characterized in more detail. IL-2 rapidly down-modulated M-CSF.R in a dose-dependent fashion, and interferon-gamma and lipopolysaccharides synergized with IL-2 in this modulation. The IL-2-induced down-modulation of M-CSF.R was shown to require the activity of protein-kinase-C and phospholipase-C. The data are consistent with the hypothesis that the down-modulation of M-CSF.R is a general property of macrophage activators.