Erythromycin biosynthesis: exploiting the catalytic versatility of the modular polyketide synthase

Bioorg Med Chem. 1996 Jul;4(7):995-9. doi: 10.1016/0968-0896(96)00096-x.

Abstract

DEBS 1 + TE is a recombinant modular polyketide synthase (PKS) in which the first two biosynthetic modules of the 6-deoxyerythronolide B synthase are linked to the thioesterase domain normally found at the C-terminus of DEBS 3. Incubation of DEBS 1 + TE with propionyl-CoA, methylamalonyl-CoA, and NADPH gives the triketide lactone (2R,3S,4S,5R)-2,4-dimethyl-3, 5-dihydroxy-n-heptanoic acid delta-lactone (2), the cyclized form of the normal triketide chain elongation product of DEBS 1. In order to probe the molecular recognition features of the PKS and to explore its synthetic versatility, [2,3-13C2]-(2S,3R)-2-methyl-3-hydroxypentanoyl-NAC thioester (3), an analogue of the normal diketide chain elongation intermediate, and (2RS)-methyl-malonyl-CoA were incubated with DEBS 1 + TE, leading to the formation of the predicted labeled triketide ketolactone [4,5-13C2]-8, as established by 13C NMR analysis and comparison with spectra of synthetic 8. This stereoselective conversion illustrates the potential of using modular PKSs as multifunctional catalysts for the enzymatic synthesis of novel polyketides.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Erythromycin / biosynthesis*
  • Multienzyme Complexes / metabolism*
  • NADP / metabolism
  • Streptomyces

Substances

  • Multienzyme Complexes
  • NADP
  • Erythromycin