The pharmacological characterization of the tachykinin receptors involved in spinal and supraspinal cardiovascular regulation is reviewed in this report. In conscious rats, substance P (SP), neurokinin A (NKA), neurokinin B (NKB), neuropeptide K (NPK), and neuropeptide gamma (NP gamma) were injected either intrathecally (i.t.) or intracerebroventricularly (i.c.v.), and their effects were assessed on mean arterial blood pressure (MAP) and heart rate (HR). Moreover, selective antagonists for NK1 ((+/-)-CP-96045 and RP-67580), NK2 (SR-48968), and NK3 (R-486) receptors were tested against the agonists. I.t. tachykinins elicited dose-dependent increases in MAP and HR (NPK > NP gamma > SP > NKA > NKB). The cardiovascular response to i.t. SP, NPK, and NP gamma was significantly attenuated by the prior i.t. administration of (+/-)-CP-96345 and RP-67580 but not by SR-48968 and R-486. By the i.c.v. route, tachykinins also elicited pressor and tachycardiac responses dose dependently (NPK > NP gamma > SP > NKA > NKB). Senktide and [MePhe7]NKB, two NK3-selective agonists, were slightly more potent than NKB on both parameters. Whereas the cardiovascular response to NPK was largely blocked by (+/-)-CP-96345 and RP-67580, that to SP was reduced by 40-50%. This treatment had no effect on the cardiovascular response to NKA and [MePhe7]NKB. Conversely, SR-48968 reduced by 40-50% the NKA-induced cardiovascular changes without affecting the central mediated effects of NPK, SP, and [MePhe7]NKB. However, when coadministered, RP-67580 and SR-48968 abolished the effects to SP and NKA while leaving untouched those induced by [MePhe7]NKB. Finally, the central effects mediated by [MePhe7]NKB, senktide, and NKB were blocked by R-486. These findings suggest that the i.t. action of tachykinins on the rat cardiovascular system is mediated by a NK1 receptor in the spinal cord, while NK1, NK2, and NK3 receptors are likely involved in the supraspinal (hypothalamus) effects of these neuropeptides. It is also concluded that NPK is a pure and powerful NK1 agonist, in contrast to SP and NKA, which are not selective for NK1 and NK2 receptors, respectively.