In the present study, we provide immunohistochemical and immunologic evidence to localize an abundant, 15.5-kDa protein to the soluble protein fraction of the proximal tubule. This 15.5-kDa protein binds fatty acids in vitro and has identity with amino acids 10-117 of alpha 2 mu-globulin (A2 fragment), a 19-kDa protein synthesized predominantly in the male liver. With reverse transcription-polymerase chain reaction, mRNA for A2 was detected in male liver but not in the male kidney. De novo accumulation of the 15.5-kDa protein was observed in the renal cortex of female rats given intravenous injections of purified 19-kDa protein (A2), suggesting intrarenal processing of the larger protein. The potential role of this protein in the proximal tubule, a site that utilizes fatty acids as an important metabolic substrate, was determined in isolated proximal tubule segments. Fatty acid and glucose oxidation rates were measured in three experimental models in which the 15.5-kDa protein was virtually absent: 1) uninephrectomized male rats treated with deoxycorticosterone acetate and salt, 2) male rats subjected to bilateral adrenalectomy, and 3) normal female rats. In the absence of the 15.5-kDa protein, fatty acid oxidation rates decreased by 30-55%, whereas glucose oxidation significantly increased in all three models. In female renal cortex, depletion of the 15.5-kDa protein was associated with a rise in heart fatty acid binding protein, an alternative intracellular transporter of fatty acids. These data support the hypothesis that a proteolytic cleavage product of hepatic alpha 2 mu-globulin may facilitate the oxidation of oleate, a hydrophobic ligand, in the proximal tubule.