Gene therapy for amyotrophic lateral sclerosis (ALS) using a polymer encapsulated xenogenic cell line engineered to secrete hCNTF

Hum Gene Ther. 1996 May 1;7(7):851-60. doi: 10.1089/hum.1996.7.7-851.

Abstract

The gene therapy approach presented in this protocol employs a polymer encapsulated, xenogenic, transfected cell line to release human ciliary neurotrophic factor (hCNTF) for the treatment of Amyotrophic Lateral Sclerosis (ALS). A tethered device, containing around 10(6) genetically modified cells surrounded by a semipermeable membrane, is implanted intrathecally; it provides for slow continuous release of hCNTF at a rate of 0.25 to 1.0 micrograms/24 hours. The semipermeable membrane prevents immunologic rejection of the cells and interposes a physical, virally impermeable barrier between cells and host. Moreover, the device and the cells it contains may be retrieved in the event of side effects. A vector containing the human CNTF gene was transfected into a line of baby hamster kidney cells (BHK) with calcium phosphate using a dihydrofolate reductase-based selection vector with a SV40 promoter and contains a HSV-tk killer gene. hCNTF is a potent neurotrophic factor which may have utility for the treatment of ALS. Systemic delivery of hCNTF in humans has been frustrated by peripheral side effects, the molecule's short half life, and its inability to cross the blood-brain barrier. The gene therapy approach described in this protocol is expected to mitigate such difficulties by local intrathecal delivery of a known quantity of continuously-synthesized hCNTF from a retrievable implant.

MeSH terms

  • Amyotrophic Lateral Sclerosis / therapy*
  • Animals
  • Capsules / chemistry
  • Capsules / therapeutic use
  • Cell Line
  • Cell Transplantation / methods
  • Cells, Cultured
  • Ciliary Neurotrophic Factor
  • Clinical Protocols
  • Cricetinae
  • Ganciclovir / pharmacology
  • Genetic Therapy / methods*
  • Genetic Vectors / genetics
  • Genetic Vectors / pharmacology
  • Genetic Vectors / toxicity
  • Humans
  • Kidney / cytology
  • Nerve Tissue Proteins / adverse effects
  • Nerve Tissue Proteins / genetics*
  • Nerve Tissue Proteins / therapeutic use*
  • Polymers / chemistry
  • Polymers / therapeutic use
  • Primates
  • Prostheses and Implants*
  • Rats
  • Sheep
  • Simplexvirus / enzymology
  • Simplexvirus / genetics
  • Thymidine Kinase / genetics
  • Transfection

Substances

  • Capsules
  • Ciliary Neurotrophic Factor
  • Nerve Tissue Proteins
  • Polymers
  • Thymidine Kinase
  • Ganciclovir