Presence of vasomotor and respiratory rhythms in the discharge of single medullary neurons involved in the regulation of cardiovascular system

J Auton Nerv Syst. 1996 Feb 5;57(1-2):116-22. doi: 10.1016/0165-1838(95)00113-1.

Abstract

We analyzed the discharges of 77 single neurons located in the rostral ventrolateral medulla (RVLM, n = 25), caudal ventrolateral medulla (CVLM, n = 18), lateral tegmental field (LTF, n = 19) and caudal raphe nuclei (n = 15). These recordings were made from 36 vagotomized and sinoaortic denervated cats that were either decerebrate (n = 27) or anesthetized with urethane (n = 9) and from 3 decerebrate cats with intact sinoartic and vagal nerves. These neurons were classified as sympathetic-related (n = 61) if spike triggered averaging showed that their naturally occurring discharges were correlated to either the cardiac related (2-6 Hz) or a faster (10 Hz) oscillation in inferior cardiac sympathetic nerve discharge. Neurons were classified as sympathetic-unrelated (n = 16) if they lacked these characteristics. We used autoregressive spectral techniques to detect additional slower oscillations hidden in the variability of neuronal discharge and possibly correlated to the oscillations of systolic arterial pressure (SAP). This analysis revealed the existence of a low frequency (LF) oscillation (0.12 +/- 0.02 Hz) in the discharges of 36 sympathetic-related and 9 sympathetic-unrelated neurons. In relation to 35 neurons in 21 animals there was also an LF component in SAP variability. In 29 instances the LF neuronal discharges and SAP variabilities were significantly correlated. In addition, there was a high frequency (HF) oscillation (0.34 +/- 0.06 Hz) in the discharges of 59 medullary neurons. In 56 cases the HF in neuronal discharge variability cohered to that in SAP variability. These data are the first to demonstrate the existence of an LF component in the discharges of individual medullary neurons, at least some of which were likely to be involved in the regulation of the cardiovascular system. Since these oscillations were evident in cats with section of sinoaortic and vagal nerves, they likely reflect central rhythmogenic properties.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Autonomic Nervous System / physiology
  • Blood Pressure / physiology*
  • Cats
  • Medulla Oblongata / physiology*
  • Membrane Potentials / physiology
  • Neurons / physiology
  • Respiration / physiology*