Five to ten percent of breast cancer in the western world may be attributed to the inheritance of highly penetrant mutations in the breast and ovarian cancer susceptibility gene, BRCA1. The biological function of BRCA1 and factors affecting expressivity, such as gene-environment and gene-gene interactions, may be more effectively studied in appropriate animal models. We report the cloning and sequencing of the canine and murine BRCA1 genes and contrast the sequences with human BRCA1. The amino terminal 120 residues of the gene are > 80% identical among the three species. The C-terminus is also highly conserved, containing an 80 amino acid stretch that is over 80% identical. Motifs of likely functional significance are maintained, including the amino terminal RING finger motif (amino acids 24-64) and the granin consensus sequence (1214-1223). The distribution of missense mutations and neutral polymorphisms identified in BRCA1-linked breast cancer suggests that disease associated missense mutations occur at highly conserved residues whereas polymorphisms are in regions of lower conservation. Among eighteen missense mutations with unknown consequences, seven occur in amino acids that are identical across species. Four of these seven (E1219D, A1708E, P1749R and M1775R) are also within conserved domains. Taken together, these data predict regions of the gene which may be critical for normal function.