Nitric oxide alters the expression of gamma-globin, H-ferritin, and transferrin receptor in human K562 cells at the posttranscriptional level

Blood. 1996 Oct 15;88(8):2980-8.

Abstract

Cellular iron metabolism is altered during chronic inflammatory states, leading to reticuloendothelial iron sequestration and an associated anemia. To study the effects of nitric oxide (NO) on the expression of three genes involved in erythroid cell iron metabolism (gamma-globin, H-ferritin, and transferrin receptor [TfR]), we developed a series of human K562 erythroleukemic cell clones retrovirally transduced with inducible nitric oxide synthase (NOS-2) and producing different steady-state levels of NO. gamma-Globin and H-ferritin protein expression was reduced in NO-producing cells in relation to the amount of NO produced. Conversely, cell surface TfR expression increased in NO-producing clones. Both the inhibitory effects of NO on gamma-globin and H-ferritin expression and the stimulatory effect on TfR were reversed by the NOS inhibitor NG-methyl-L-arginine (NGMMA). gamma-Globin and H-ferritin mRNA levels were unaffected by NO production. In the case of TfR, NO appeared to stabilize mRNA in that the half life of TfR mRNA decreased from approximately 15 hours to less than 3 hours when NO production by NOS-transduced clones was inhibited. Thus, NO can regulate expression of these genes at the posttranscriptional level, an effect that is likely mediated by the known effect of NO on the RNA binding activity of iron regulatory protein-1 (Pantopoulos and Hentze, Proc Natl Acad Sci USA 92:1267, 1995). Furthermore, our findings suggest a mechanism for the observed relationship between NO production and the pathophysiology of the anemia of chronic disease.

MeSH terms

  • Base Sequence
  • Ferritins / biosynthesis*
  • Ferritins / genetics
  • Gene Expression Regulation, Leukemic / drug effects*
  • Globins / biosynthesis*
  • Globins / genetics
  • Humans
  • Leukemia, Erythroblastic, Acute / pathology
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / pathology
  • Molecular Sequence Data
  • Neoplasm Proteins / biosynthesis*
  • Neoplasm Proteins / genetics
  • Nitric Oxide / biosynthesis
  • Nitric Oxide / physiology*
  • Nitric Oxide Synthase / antagonists & inhibitors
  • Nitric Oxide Synthase / genetics
  • Nitric Oxide Synthase / metabolism
  • Protein Processing, Post-Translational / drug effects*
  • RNA, Messenger / biosynthesis
  • RNA, Neoplasm / biosynthesis
  • Receptors, Transferrin / biosynthesis*
  • Receptors, Transferrin / genetics
  • Recombinant Proteins / antagonists & inhibitors
  • Recombinant Proteins / metabolism
  • Tumor Cells, Cultured
  • omega-N-Methylarginine / pharmacology

Substances

  • Neoplasm Proteins
  • RNA, Messenger
  • RNA, Neoplasm
  • Receptors, Transferrin
  • Recombinant Proteins
  • omega-N-Methylarginine
  • Nitric Oxide
  • Globins
  • Ferritins
  • Nitric Oxide Synthase

Associated data

  • GENBANK/L20941
  • GENBANK/M11427
  • GENBANK/M11507
  • GENBANK/X60364