The ubiC gene of Escherichia coli encodes chorismate pyruvatelyase, an enzyme that converts chorismate into 4-hydroxybenzoate (4HB) and is not normally present in plants. The ubiC gene was expressed in Nicotiana tabacum L. plants under control of a constitutive plant promoter. The gene product was targeted into the plastid by fusing it to the sequence for the chloroplast transit peptide of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Transgenic plants showed high chorismate pyruvate-lyase activity and accumulated 4HB as beta-glucosides, with the glucose attached to either the hydroxy or the carboxyl function of 4HB. The total content of 4HB glucosides was approximately 0.52% of dry weight, which exceeded the content of untransformed plants by at least a factor of 1000. Feeding experiments with [1,7-13C2]shikimic acid unequivocally proved that the 4HB that was formed in the transgenic plants was not derived from the conventional phenylpropanoid pathway but from the newly introduced chorismate pyruvate-lyase reaction.