Keeping the oxygenation status of newborn infants within physiologic limits is a crucial task in intensive care. For this purpose several vital parameters are supervised routinely by monitors, such as electrocardiograph, transcutaneous partial oxygen pressure monitor and pulse oximeter. Each monitor issues an alarm signal whenever an upper or lower limit of the parameter(s) measured is exceeded. However, in practice it turns out, that a considerable amount of false alarms is generated by artefacts, which are attributed mostly to movements of the infants. Eliminating these false alarms would be of benefit to the staff as well as the patients of the intensive care unit. Accordingly, an automated system based on Fuzzy Logic was developed, which is capable of distinguishing between critical situations and artefacts. The system is based on a Transputer IMS T425 in a PC, which collects the data from the monitors, plots it on a colour screen, saves it to hard disk and analyses it by Fuzzy Logic. Fuzzy algorithms were developed to generate more reliable alarms. All vital parameters of eight infants, who either moved often and/or frequently produced real alarm situations, were recorded. Synchronously the infants' movements and care procedures were video taped. The data and video were analysed off line with the help of an experienced neonatologist. His judgement was compared to the analysis of the Fuzzy Logic system. The results show that it is possible to improve the reliability of the monitored data with the aid of an evaluation strategy based on Fuzzy Logic and hence distinguish between real alarm situations and movement artefacts to the extent that an application in an intensive care unit under routine conditions becomes conceivable.