To understand better how synaptic signaling contributes to network activity, we analyzed the potential contribution of putative unitary postsynaptic currents (PSCs) to locomotor-related information received by spinal interneurons in neonatal rats. The average cyclic modulation of the whole-cell current in 13 neurons was quantified as the difference between the current integral (charge) during the first and second halves of the cyclic locomotor network output. Between 7.6 and 303 average unitary PSCs per second were needed to produce the cyclic modulation. This number is so low that very few (1-5) of the synapses contributing to the cyclic information need to be active simultaneously. This suggests that individual presynaptic cells in a central locomotor network can have a powerful influence on other neurons.