Reaction of nitric oxide (NO) with L-proline in methanolic sodium methoxide yields a diazeniumdiolate product, C5H7N3O4Na2.CH3OH (PROLI/NO), that can be stabilized in basic solution but that dissociates to proline (1 mol) and NO (2 mol) with a half-life of only 1.8 s at pH 7.4 and 37 degrees C. This kinetic behavior has allowed the generation of highly localized antiplatelet and vasodilatory effects. By infusing solutions containing 4 microM PROLI/NO in 0.1 M sodium hydroxide at the rate of 1 nmol.min-1 immediately upstream from a polyester vascular graft in the unheparinized baboon circulatory system, for example, platelet deposition at the normally thrombogenic graft surface was substantially reduced relative to controls receiving only 0.1 M sodium hydroxide. In a second study, infusion of PROLI/NO into the right atrium of sheep with induced pulmonary hypertension selectively dilalated the lung vasculature, dose-dependently reducing the pulmonary arterial pressure by as much as 9 mmHg with no observable effect on the systemic arterial pressure at an infusion rate of up to 24 nmol.kg-1.min-1. PROLI/NO could also be formulated as an insoluble polymer blend that released NO smoothly for prolonged periods. The results suggest that localized delivery of diazeniumdiolates such as PROLI/NO which generate NO with extreme rapidity on entering the blood stream may hold considerable promise for inhibition of thrombus formation, selective dilation of the vasculature, and other research and clinical applications.