Posttranscriptional regulation of p21WAF1/CIP1 expression in human breast carcinoma cells

Cancer Res. 1996 Nov 1;56(21):5055-62.

Abstract

p21WAF1/CIP1 plays a major role in the induction of G1 arrest following DNA damage. Although p21WAF1/CIP1 expression is regulated by the tumor suppressor p53, induction of p21WAF1/CIP1 expression through p53-independent pathways has been described in numerous cell types. In this report, we describe the mechanism by which the retinoid 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) induces p21WAF1/CIP1 in breast carcinoma cells possessing either a wild-type (MCF-7 cells) or mutated (MDA-MB-468 cells) p53. Exposure of MDA-MB-468 cells to this retinoid results in an approximately 10-fold increase in p21WAF1/CIP1 mRNA levels, whereas less than a 2-fold increase in p21WAF1/CIP1 gene transcription was observed as indicated by transient transfection experiments utilizing a p21WAF1/CIP1 promoter firefly luciferase reporter gene construct and nuclear run-off studies. We found similar results in the MCF-7 cells (Z-M. Shao et al., Oncogene, 11: 493-504, 1995). We have now found that while enhancing p21WAF1/CIP1 gene transcription minimally, this retinoid increases p21WAF1/CIP1 mRNA stability by 3-fold in both cell types. We also demonstrate that approximately 1.5 kb of the 3' untranslated region causes enhanced instability of p21WAF1/CIP1 mRNA. The retinoid-dependent increase in p21WAF1/CIP1 mRNA stability is accompanied by an increase in p21WAF1/CIP1 protein expression, as indicated by Western blot experiments utilizing anti-p21WAF1/CIP1 monoclonal antibody. This increase in p21WAF1/CIP1 is subsequently followed by the onset of programmed cell death in both cell types. Thus, CD437 is a novel retinoid which enhances p21WAF1/CIP1 mRNA levels through stabilization of the message regardless of the p53 status of the cell.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Apoptosis
  • Breast Neoplasms
  • Cyclin-Dependent Kinase Inhibitor p21
  • Cyclins / biosynthesis
  • Cyclins / genetics*
  • Female
  • Gene Expression Regulation* / drug effects
  • Humans
  • RNA, Messenger / analysis
  • Retinoids / pharmacology
  • Transcription, Genetic

Substances

  • CD 437
  • CDKN1A protein, human
  • Cyclin-Dependent Kinase Inhibitor p21
  • Cyclins
  • RNA, Messenger
  • Retinoids