Vertebrate collagenases, matrix metalloproteinases (MMPs), cleave type I collagen at a single helical locus. We show here that rodent interstitial collagenases (MMP-13), but not human fibroblast collagenase (MMP-1), cleave type I collagen at an additional aminotelopeptide locus. Collagenase cDNAs and chimeric constructs in pET-3d, juxtaposing MMP-13 sequences amino-terminal to the active site in the catalytic domain and MMP-1 sequences carboxyl-terminal and vice versa, were expressed in Escherichia coli. Assays utilized collagen from wild type (+/+) mice or mice that carry a targeted mutation (r/r) that encodes substitutions in alpha1(I) chains that prevent collagenase cleavage at the helical locus. MMP-13 and chimeric molecules that contained the MMP-13 sequences amino-terminal to the active site cleaved (+/+) collagen at the helical locus and cleaved cross-linked (r/r) collagen in the aminotelopeptide (beta components converted to alpha chains). Human MMP-1 and chimeric MMP-1/MMP-13 with MMP-1 sequences amino-terminal to the active site cleaved collagen at the helical locus but not in the aminotelopeptide. All activities were inhibited by TIMP-1, 1,10-phenanthroline, and EDTA. Sequences in the distal two-thirds of the catalytic domain determine the aminotelopeptide-degrading capacity of MMP-13.